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Automated, Closed Form Integration of

Formulas in Elliptic Motion

by William H. Jefferys

University of Texas at Austin

Abstract: In some perturbation theories it is possible to avoid

expansion of the perturbations in powers of the eccentricity,

obtaining results in closed form by using the true or eccentric
I

anomaly instead of the mean anomaly. This paper describes an

algorithm (which has been programmed for the 6600 computer using

the formula manipulation system TRIGMAN) for automatically per-

forming the integrals which arise in these theories.
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Some perturbation theories (e.g. Brouwer 1959; }iori 1963,

Harrington 1969; Aksnes 1969) avoid expansion of the ;perturbations

in powers of the eccentricity by expressing them in terms of the

true or eccentric anomaly instead of the mean anomaly. To carry these

or other theories to high order, it is necessary to perform the c:al.cu-

lations on computers, using a formula manipulation language such as

FORMAC (Tobey, et.al . 1967), or one of the special purpose

systems developed for use in celestial mechanics, such as that of

Barton (1967 ), Deprit and Rom (1968), Hall and Cherniack (1969)

or Jefferys (1970.

In the computation of the short-period perturbations, one has

to integrate functions of the form

F (r,r, u, f)
	

(1)

with respect to the mean anomaly t; where r is the distance to the

primary, r = dr/dt, u is the eccentric anomaly and f the true anomaly.

For convenience we will also assume that the semimajor axis has been

normalized to unity.

In hand computations the integrals are computed case-by-ease as

they arise, using any available method and some well-known tricks.

For certain cases, general formulae are available (Kozai 1962).

On the other hand, when we attempt to automate the calculation,

it is necessary to have an algorithm which will invariably work on

some well-defined but rather general class of functions. Of course,

it is not possible to guarantee that the integrated function will
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remain in that class of functions, or even that it will itself be in-

tegrable in closed form (as will be seen below). Futhermore, it may

be necessary to sacrifice elegance and speed in the algorithm in order

to obtain reliability and the desired degree of generality.

We will assume that the function to be integrated is a sum of the

form

F	 E P (r, r) sin (j f + ku + ep)	 ,	 (2)

where P is a polynomial in r and t , j and k are integers, and cp

is independent of the three anomalies. In general, negative powers of

P cannot occur, owing to the resulting singularity that appears at 't = 0,

TT	 but they may occur in Eq. (2) , provided that they do not occur in

Eq. (6), below. (For example, the algorithm will successfully handle

the function (sin u) /r r/e) .
3

Also, the fact that we do not normally have both j # 0 and k ^ 0

in a given term does not affect the algorithm.

The algorithm proceeds as follows:

Step 1. Using standard trigonometric formulas and the identities of

elliptic motion

sin f = hTVe,

cos f = (n2/r - 1) /e,	 (3)

sin u = We,

cos u = (1 - We,	 I

where a is the eccentricity and n = (1 - e2)1/2, we may express sin nf,

cos nf, sin nu, and cos nu as power series in r and  for those multiples

of f and u appearing in the series to be integrated.

-3-
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St_ e__ a, 2. Using the results from Step 1 and the ,identities

cos (rif + T) = cos of cos T - sin of sin 'Y

sin(nf' + T) = sin of cos 'Y + cos of sin IV ,	 (4)

•	 and similar ones in the eccentric anomaly, we express the function to

be integrated as a polynomial in r and t, in which u and f do not appear

explicitly.

ft CD 3. The identity

(
p
) 2
	

--1 + 2/r - 712/r2	(5)

is used to eliminate all powers of  higher than the first. Thus

(assuming F does not have any singularities, as mentioned above) we

obtain

F = A (r) •+ B (r)r ,	 (6)

where A and B are polynomials.

,Step 4. The second term of Eq. (6) is separated off and immediately

integrated:

,rB (r) fi dt = ,rB (r) dr.	 (7)

In this integration it is possible for terms i,n log(r) to appear. Such

a term arises, for example, in the third-order Brouwer theory of an

artificial satellite, from the term

8F2* .
 as 

ag	 aG	 X	 (8)

`	 owing to the fact that S 1 contains a term in the equation of the center

f - t, and

of =[ = + ' 21 sin f
ae	 r

*, 1 
n

(g)
?le	 e r

In addition, the third-order Brouwer theory requires the integration of

` 	 f -4 itself, which cannot be obtained in closed form.

-4-
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Step 
•

^̂  The first term of Eq: (6) is rewritten

	

 ^	 1A (2	 +
.	 2 A1(r)	

1
r A2 (r) ,	 (10)

•	 r

where Al contains no positive powers of r, and A2 no negative powers

of r.

S.- 6 . The identities

1/r	 (1 + e cos f) /,n2,

r	 1 - e cos u	 (11)

are substituted into A l and A2 , respeetively, to obtain

'	 A (r) _ 
12 B 1 (f) + r B2 (u) ,	 (12)
r

where B1 and B2 are Fourier series in the indicated variables.

St_ ep 7. The terms in B1 and B2 of Eq. (12) are integrated with the

aid of the formulae
2

d-G = ,rr df , and

dG = r du ,	 (13)

respectively.	 Thus,'we get the final result as

f F dt- = f B (r) dr +	 , `B 1 (f) df + f B 2 (u) du	 (14)

x Because of the requirements of perturbation theory, it is usual

to separate out the secular terms in B l and B2 before integration.

These are added to the new Hamiltonian, and the result is to produce

in the determining function terms of the form

(f 4) C1 and

(u4) C 2	 (15)

from B1 and B2 respectively. The terms from Eq. (15.2) are easily

converted into the form of the original function F by using Kepler's

r
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equation t a u - e sin u; but (as is well known) there is no such

simplification for the term in the equation of the center, f-t. Careful

choice of the imtermediary orbit (cf. Aksnes 1969) may postpone to a

higher order the introduction of such terms; but it is probable that

they will eventually appear in any case.

Our algorithm does not stop here, however. We have found that the

resulting series is more complicated than it has to be, owing to the

existence of the identity e 2 + T12 = 1 , which has not been made use of

because a and n are carried as independent variables. The problem of

simplifying the final result. is far from solved, but the following two

steps appear to give good results in some cases (an approximate 40%

reduction in the

Step 8. Suppose

^ to be simplifi

stitution e 2--V- 1

We then multiply

length of the

that the larg

ed is a -k . We

- ,12 so as to

by a -k again.

series) .

est negative power of a in the expression

multiply f by e  and then make the sub-

obtain an expression at most linear in e.

(To see the reason for this, consider

the effect on the series n -19e -1 -r1-19 e - T1-17 e - 11 -ise) .

St_ ee_9. Repeat Step 8, but reverse the roles of a and r. This expresses

all Positive powers in terms of a instead of n. which appears to be the

more compact form.

The algorithm as presented may result in a determining function

which differs from the usual one by a function independent of t. This,

of course, does not affeet'the validity of the results, although it does

•	 change the meaning of the constants in the theory. It is up to the

judgement of the investigator as to what constant of integration in the

determining function will produce the most convenient theory.

t
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It should also be noted that this algorithm works just as well when

Hill's variables r, f+g ,h; i-,G,H are used instead of the more usual

Delaunay variables, since both r and f appear in the algorithm. In fact,

Aksnes has shown (1969) that the resulting theory may be more compact;

and in addition, if the determining function is expressed in terms of

I	 r and t instead of f or u , the evaluation of the perturbations may be

more convenient, because instead of evaluating several trigonomefi ^::.c

functions in multiples of an angle, we evaluate shortk,r polynomials in

r and f.

Finally, Professor Hori has noted ire a private conversation that '

this algorithm may be able to handle certain functions of the form

G = - (f --G) k Fk

where F is as before, if one integrates by parts and uses d (f-,G) _ ( d,tr

so long as r  has no secular part, or if its secular part cancels that

of another term (as happens in the second order theory of the Artificial 	 A

Satellite by the Hori-Lie method in Hill's variables, using an elliptic

reference orbit). When the integration cannot be obtained in closed

form, it may be necessary to apply the identity

f-4=(f-u)+(u t)

n
= 2	 sin nu + e sin u

n=1 n

where = S (e) = e (1	 An alternative is to define new functions

such as

(f _t) k U , as they are required.
•	 0

7-
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